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I. OBJECTIVES AND STATUS OF THE RESEARCH EFgORT
1. Perception of temporal patterns

A basic aspect of our normal perception of speech and music,
is the ability to discriminate and categorize temporal patterns.
We have been studying the discrimination of temporal patterns
consisting of sequences of brief tones. The observer is
presented with two sequences of tones and asked to report whether
or not the two temporal patterns are the same--ignoring any other
differences between the two stimuli, such as frequency. On half
the trials, the patterns are the same, and on half they are
different. For most of ocur experiments, the sequences were
composed of 20-ms to 30-ms duration, 1000-Hz tones, and the mean
intertone interval was set between 20 and 100-ms. The mean
duration of a typical sequence was 600-ms and the time separation
between the pair of sequences was 750-ms.

Subjects perform this task very well. The important variable
controlling task difficulty is the correlation, P..r between the
two series of tone interonset times. On SAME trlals,A_e is set
to 1.0 and on DIFFERENT trials, p,, is set to a constant value
less than 1.0, depending on the condition of interest. The task
is easiest when, on DIFFERENT TRIALS, Pex is set to zero, and
becomes more difficult as p approaches one. The optimal way to
perform this task is to estimate Pey from the sequences of
interonset times observed on a trial. We know how that statistic
is distributed, and so we can compute how d' should depend on rho
and the number of tones in the sequence. We assume that there is
an internal noise or jitter on the subject's estimate of the
times, and we factor that into our prediction of subject
performance. For our previously reported data, this jitter was
approximately 15-ms.

a. Discrimination of arrhythmic tonal sequences: Effect of
sequence onset delay. (Sorkin and Montgomery; revised manuscript
under editorial review)

Sorkin and Montgomery (1991) showed that listeners could
perform the discrimination task at a level that was well above
chance, when uniform time compressions or expansions were made to
one of the two patterns. All tones in their experiments were
1000 Hz; the sequences were presented monaurally and the time
separation between the end of the first sequence and the
beginning of the second sequence was approximately 800-ms.
Performance decreased when the second sequence was compressed or
expanded in time, and depended on the magnitude of the time
transformation between the two sequences. The size of the
decrease in performance ranged from 0 to 2 d' units over
transformations of 0.6 to 1.6. The results supported the
assumption that there was an internal noise proportional to the
absolute magnitude of the transformation difference.

Additional evidence supporting the model and the
relationship between temporal pattern discrimination and speech




recognition has been obtained with hearing impaired listeners
using cochlear prostheses (Collins and Wakefield, 1992). cCollins
and Wakefield found that their observer's ability to discriminate
temporal patterns depended on the temporal correlation between
the two sequences, as predicted by the TC model. 1In addition,
they reported that the observers' ability to discriminate
arrhythmic sequences was positively correlated with the
observers' speech recognition performance.

Data from comodulation masking release (CMR) and correlation
discrimination experiments (CD) may support a different view of
the pattern discrimination process. These experiments suggest
that the listener performs a cross-band comparison of the
anplitude envelopes of the waveforms. CHMR is the reduction in
the threshold for a signal masked by a narrow band of noise (the
on—-frequency band), that occurs when one adds a second band of
noise (the flanking band) whose envelope is correlated with the
first band (Hall et al., 1984; Cohen and Schubert, 1987).

In the CD task (Richards, 1987, 1988), subjects have to
discriminate between simultaneously presented monaural noise
stimuli that have partially correlated amplitude envelopes. 1In
Richards' (1987) experiment, the stimuli were centered at 2500
and 2750 Hz and had bandwidths of 100 Hz. Richards' observers
could discriminate between pairs of stimuli having different
correlations between the noise envelopes. The observers' ability
to discriminate was a function of the envelope correlation.

Moore and Emmerich (1990) extended Richards' CD paradigm to
conditions in which the signal duration, bandwidth, frequency
separation, relative level, and center frequency of the lower
band, were varied. Their results were consistent with a
mechanism of envelope correlation. They reported that the effect
of bandwidth and relative level on performance differed from that
found in CMR tasks and they suggested that somewhat different
mechanisms might be responsible.

The models proposed to describe the CMR phenomenon have been
influenced by the waveform comparison models proposed to describe
binaural masking level difference phenomena (Buus, 1985; Moore
and Schooneveldt, 1990; Hall et al., 1988). CMR investigators
also have been interested in the differential effects of monaural
or diotic, and dichotic CMR presentations. Cohen and Schubert
(1987) found that CMRs were slightly smaller in dichotic than
monaural conditions, while diotic CMRs were greatest. Moore and
Schooneveldt (1990) found dichotic CMRs somewhat greater than
monaural CMRs.

These results from CMR and CD experiments, support the idea
that listeners will be able to make temporal pattern
discriminations across spectral (and spectral plus earphone)
channels. They also suggest that these discriminations may be
based on a mechanism of waveform envelope comparison, when the
patterns are simultaneous or there is a brief delay between
pattern onsets. If the pattern-onset time delay is longer than
about 20-ms, the envelope correlation mechanism will fail,




possibly because of the system's inability to maintain an
adequate memory for the stimulus. We extended the temporal
sequence discrimination paradigm to conditions in which the two
sequences were presented simultaneously or at brief time delays.

Figure 1 shows results from our experiments (Sorkin and
Montgomery, submitted), in which we found that listeners can
discriminate between two temporal patterns, even when the two
patterns were defined by iso-frequency tone sequences presented
at different frequencies (1000 and 2300 Hz) and to different
ears. In the monaural condition, the second sequence began in
the right earphone channel at a fixed time delay (intersequence
interval) after the onset of the first sequence. The dichotic
condition was identical except that the second sequence (at 2300
Hz) was presented in the left earphone channel. The circle
symbols (solid lines) show performance in the monaural conditions
and the square symbols (dashed lines) show performance in the
dichotic conditions. The vertical bars are the average of the
observers' standard errors of the mean. It is clear that there
was very little difference between the monaural and dichotic
-stimulus presentation conditions.

The intersequence delay interval had a large effect om
performance. Performance was good when the sequences were
presented either at very short or very long time delays, and
performance was poor at intermediate delays (when the sequences
overlapped from about 40 to 90 percent). The results at very
short intersequence intervals were consistent with CMR/CD results
and with the predictions of both a temporal pattern correlation
model and an envelope correlation model. The results at long
intersequence intervals replicate our previous sequence
discrimination results and support a temporal correlation
interpretation.

In a second experiment, we temporally compressed or expanded
all times in the second sequence. All marker tone durations and
intertone gaps in the second sequence of tones were multiplied by
a factor between 0.8 and 1.2 (chosen randomly on each trial).
This manipulation was expected to affect the envelope comparison
mechanism much more than the temporal pattern correlation
mechanism. This is because temporal distortions cause temporal
misalignment of the sequences; such misalignments result in a
large decrease in the correlation between the envelopes of the
sequence waveforms. The major effect of this compression-
expansion manipulation was observed in the shortest interval
conditions, where we had expected the envelope correlator
mechanism to be active.

Figure 2 shows that performance decreased greatly when the
intersequence interval was between 0 and 100-ms. The monaural
no-compression and monaural-compression conditions are plotted
together in figure 3; it is evident that the major effect of the
time compression manipulation was for intersequence delays of
less than 100-ms. These results support a two-mechanism
interpretation: When the time interval between sequence onsets is
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brief, the likely mechanism is envelope comparison. When the
time interval between sequence onsets is lohg, the likely
mechanism is temporal pattern correlation.

Why was discrimination performance so poor when the
intersequence interval was greater than 50-ms and less than 350-
ms? Since the envelope comparator cannot function effectively at
these interval, the question reduces to asking why the temporal
pattern correlator cannot function effectively in this region.
We believe that the temporal pattern correlator cannot function
when the sequences overlap in time. The attentional demands
required by processing and encoding the sequence time interval
information, may limit system operation to a single-channel mode.
As a result, in order for the TC mechanism to function
effectively, the stimuli have to be presented sequentially in

time. This may be a general requirement for processing signals
in the "context-coding" mode.
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Figure 1. The average performance of four observers is plotted as a function of the time interval between the
onsets of the first marker tone in each sequence. The circle symbols are the data for the monaural conditions

and the square symbols are the data for the dichotic conditions. The brackets show the average standard error
of the mean for the four listeners.
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b. Effects of rhythmicity on temporal pattern discrimination
(Sorkin and Sadralodabai).

The rhythmic aspect of a stimulus is an important property
of a temporal pattern. We have begun to analyze the effect of
rhythmic properties on pattern discrimination, in the context of
the TC model. Recently, we reported (Sadralodabai and Sorkin,
1992) on a preliminary study of the effect of rhythmicity on the
discrimination of temporal patterns. Observers were presented
with two sequences of 12 tones and asked to discriminate whether
the two patterns were the same or different. The duration and
the frequency of tones were 25 ms and 1000 Hz respectively. As
in our other experiments, the temporal pattern of each sequence
was determined by the intertone time intervals.

Two kinds of correlation were important in this experiment:
One was the sequence correlation, p,, the correlation between
the two 12-tone temporal patterns, as defined earlier. The second
type of correlation, the rhythmic correlation, p, , was defined
as the correlation between the temporal patterns of successive 4=~
interval subsequences within the 12-tone sequence. We used p,
as a measure of the rhythmicity of the sequences. For example, a
rhythmic correlation of 0 indicates no repetition of sub-patterns
within a given sequence, and a correlation of 1 indicates
complete repetition of the sub-patterns within a sequence.

The control condition in this experiment replicated the
original correlation experiments, i.e., p, =0, or no repetition
within the sequences. Values of the sequence correlation were O,
0.4, and 0.8. The mean and standard deviation of the intertone
time intervals were 50 and 35 ms respectively. Performance (4d')
decreased as the sequence correlation increased, consistent with
the earlier results. The TC model was fitted to this data and the
internal noise was estimated for each listener based on their
performance. Estimated values of o, for observers 1, 2, and 3,
respectively, were 19-ms, 22-ms, and‘19-ms.

We then tested performance in the experimental condition,
with a rhythmic correlation, p, =1. That is, there were 3
repetitions of the 4-interval subsequences within the sequence
(the last repetition contained only three intervals). The
sequence correlation was varied from 0 to .8, in steps of 0.2.

As can be seen by the plotted points in figure 4, performance was
very good and decreased as the sequence correlation increased.

We constructed a simple extension of the TC model to this
task, using the following argument: Normally, there are two lists
of 11 intertone times that may be used to estimate the
correlation between the temporal patterns. When there are
repeating patterns within the sequence, there will be fewer
(independent) intervals are available for the correlation
estimate. In the P.,=1 case, there are only 4 independent
intertone time 1nterva1s, although this pattern of four intervals
repeats 3 times. Thus, when the listener estimates the

correlation in the Ps,~1 case, only 4 intertone times may be used




instead of 11. This results in an increase in the variance of

. , the estimate of the between-sequence correlation, and hence a
potential decrease in performance. However, repeating the
patterns within a sequence yields a reduction in the effect of
the observer's internal noise, because the observer's estimates
of the 4 intertone times within a repetition becomes
(statistically) more reliable. Thus, according to the simple
extension of the TC model: in the repetition condition the
effective n is 4, rather than 11, and the effective internal
noise (o%) is 1/3 of what it was in the non-repetition
condition.

The model's predictions are shown as the smooth curves in
figure 4. The improvement in performance due to the rhythmicity
of the sequences was much better than predicted by the simple TC
model. We also examined performance at rhythmic correlation
values of 0, .5, 1, and at sequence correlations of 0 and .4.
Most of the improvement in performance seemed to occur when the
rhythmic correlation was greater than 0.5. Results at a mean
intertone interval of 100-ms also were consistent with these
results.

From these experiments, we conclude that the presence of
rhythmicity plays an important role in a listener's ability to
discriminate between two temporal patterns. Further experiments
will attempt to revise the model so that it can capture the
effects of rhythmic properties of the patterns. It appears that
(when p =0) the observer may be using a non-optimum strategy for
deciding if the sequences are different; that strategy results in
an improvement in performance when there is information that
reduces the size of the ensemble of possible sequences (e.g. when
P.y>0) - One possibility is to construct conditions for which
Py > 1S not an optimum strategy and in which the observer may use
information about the possible sequences on a trial.

We have begun a series of experiments to directly assess the
effect of important task variables on the discrimination of
rhythmicity. We continue with our assumption that the
rhythmicity of a pattern is related to the correlation between
temporal units within the pattern (as defined by pmyin a pattern
that has partially repetitive cycles of m subpatterns of size k,
with a uniform correlation between cycles). The observer's task
in our experiments, will be to discriminate which of two patterns
is more rhythmic. Our initial experiments indicate that
observer's have no trouble with this two-interval-forced-choice
task, and that adaptive techniques provide reliable estimates of
performance,
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c. Effect of temporal position and temporal context (Sorkin and
Sadralodabai).

One weakness of the temporal correlation model is that it
ignores effects occurring at different temporal or serial
positions within the serial pattern. This insensitivity to time-
positic ' is a consequence of the assumption that pattern
information is encoded independently of the location of that
information within each sequence. Previous reviewers of our
research have pointed out that this lack of sensitivity to
conditional time-position properties may not be plausible, given
what is known about speech and musical perception. For example,
two patterns that have large and distinctive gaps near the end,
and relatively uncorrelated patterns throughout the rest of their
patterns, will probably be judged more similar than two patterns
that have more uniform distributions of gaps, but a higher
statistical similarity, i.e., temporal correlation (see Devenyi
and Hirsh, 1975; Espinoza-Varas and Watson, 1986; Hirsh et al.
1990; and Watson et al. 1975, 1990). It is evident that a model
that relies on a temporal correlation parameter that is uniformly
defined over the pattern duration, probably will not be able to
adequately specify the discriminability of the patterns.

To remedy this weakness of the TC model, we have begun to
directly study the distribution of an observer's responses
(different/same) as a function of both the position and the
properties of the temporal intervals in the two stimulus
sequences. This analysis is similar to those by Berg (1989,
1990), Berg and Green (1990), Lutfi (1989, 1990, 1992), and
Sorkin et al. (1987), using the sample-discrimination procedure
(see the description of weights analysis in section C). Although
our procedure is not formally identical to tne sample-
discrimination procedure, these technigues will enable us to
determine the differential weight employed by observers at
different positions in the sequences.

On each trial, the observer's response and the sequence of
intertone intervals in each sequence, will be recorded. We will
compute a COSS-type function of the difference (and the product)
of the corresponding intervals in each sequence. Specifically,
we will compute the probability that the observer has responded
'‘different', conditional on the magnitude of the difference
between the intertone intervals at that serial position, and
conditional on “he magnitude of the product of the intertone
intervals at that serial position.

That is, for DIFFERENT trials, and across all values of
zj‘t1j| for j#i, we will compute (for each positic~, 1):

|t
p(respond "DIFFERENT" | |t, .-t,.| ) (1)
and

p(respond "DIFFERENT" | t, .-t,.) (2)




We assume that the observer's decision on each trial is
based on either

Eai(ltai-thil) or Ta;(t, ;*t; ;). (The latter statistic

is a version of the TC model.) We will use the standard
deviation of the resulting distributions as an estimate of the
observer's decision weight at position i. (The reader may wonder
whether the properties of the resulting distributions can be used
to determine which statistic was being used by the observer.

From simulations, we know that the standard deviation of the
difference and product distributions is approximately the same.
Although the shape of the distributions are diffesrent, the number
of trials required to tell which statistic was used probably is
not feasible in a human experiment.)

These analyses will be repeated using sequences in which the
intertone intervals have non-uniform means or non-uniform
standard deviations, at different serial positions in the
sequence. Sequences generated by the latter procedure will have
serial positions that contain more information relevant to the
task (in the sense of Lutfi's 1992 analysis and his Proportion of
Total Variance hypothesis). Such positions should show higher
observer weights than less variable intervals. We can also test
whether the distinctiveness of the interval in the sequence,
rather than its informativeness or serial position, commands
higher observer attention. Sequences will be constructed in
which the intervals in some serial positions have higher mean
durations; these positions should show higher observer weights
than the positions having shorter mean intervals, in the sense of
Kidd and Watson's (1992) Proportion of Total Duration hypothesis.
These experiments should provide specific, quantitative data on
the effects of serial-context factors on temporal pattern
discrimination.

Finally, the temporal pattern correlation model has not been
tested with specific subsets of temporal patterns. For example,
Povell and Essens (1985) and others have argued that there is a
natural organization or structure to certain temporal sequences,
depending on the relationship between the position of occurrence
of the tones in the sequence and the basic sequence timing.
Suppose that the duration of the base :>ycle of a repeating
sequence is 760-ms, each containing 8 tones of 40-ms duration,
and the smallest inter-tone gap is 40-ms. Any tone must start on
one of the 16 possible starting times defined by those 40-ms
(discrete) periods. Assume that all patterns have a tone at the
first period. Certain sequences, by virtue of the specific
starting times of the tones, will be perceptually more
'structured' than others. We will conduct pattern discrimination
experiments with different subsets of these fully random
sequences, using different algorithms for selecting the patterns,
such as for metricity and nonmetricity. Using the Pattern
Correlation model, we will evaluate the statistical and empirical
aspects of these effects.

12




2. Analysis of Group Detection Systems

We have been using the theory of signal detectability to
develop models for descriwing how groups of detection systems can
detect signals. These models are based on the theory of signal
detectability, specifically on multi-channel auditory detection
(Berg, 1990; Green, 1992; Durlach et al., 1986). The models
enable us to make quantitative predictions relating group signal
detection performance (accuracy, 4d' ; bias, B ; and

. . . 9grou grou .
efficiency, nymm) to a group's size, the mean and variance of
member d', the correlation among member judgments, the relative
influence of members on the decision), the group decision rule,
and the degree of member interaction.

a. Analysis of the Ideal Group (Sorkin and Dai, submitted).

A simplified concept of the multi-channel detection/decision
process is illustrated by the system shown in figure 5. This
system is composed of a group of detectors which must decide
whether a signal or no-signal event was present on a trial. Each
detector monitors a distinct channel and each channel is
subjected to several noise sources: One of these sources is
unique to each detector (in the figure: n,, n,, n;)}, and the:other
sources are common to two or more detectors 6e.g. n, 53, Ny3)e
Each detector computes a statistic, X,, that represenhts the
detector's estimate of the likelihood that the signal was present
on that trial. The list of estimates <X,, X,,...X > is the group
estimate vector, X. The system's task is to deciae, given the
group estimate vector, whether or not a signal was present.

All the noise sources are assumed to be additive, normally
distributed (Gaussian) random variables having zero means and
variances of oi, 03, O%s ogz and 0;3; the magnitude of the
variances are 1ndepenéent'd% which'stimulus event occurred.
Thus, the statistic, X,, is a normally distributed (Gaussian)
random variable, having a mean of zero on noise trials and a mean
of p, on signal trials. The difference between the means of X,
given signal and given no-signal, is the mean vector, u = <ky,
Hoyoesold >

2 The variance of X; is equal to the sum of the variance of
its noise inputs. For detector 1 we have

Var(X,)= oi + 0}, + 0i, (3)
The covariance of the estimates of any pair of detectors,
Cov(X“)%), is equal to the sum of the variances of the noise

sources common to those two detectors. For detectors 1 and 3:

Cov(X,,X;) = °i25'+ 013 (4)

13




Figure 5. A simplified version of a group detection system. Each detector has a unique
source of noise, plus a noise that is shared with one or both of the other detectors.
The noise sources are independent, Gaussian random variables, with zero means and
specified variances; the variances are independent of which stimulus event occurred.
The decision variable, Z, is the weighted sum of the detector estimates.

stimulus signal: <pq, py, B3>

or no-signal: <0, 0, 0>

NN

noise

sources

n, — det. n, — det. ny — det.

ny 5.3 1 2 3
nNy,3 (“

|
detector )
estinmates Xy X, X3
weights aj a, as
Zaixi
decision variable YA
Z >= Zc ?

response "signal"”, "no-signal"

The entries of the covariance matrix, ¥, summarize the values of
these variances and covariances. For the specific system shown
in figure 5, we have

_ -
2 2 2 2 2 2
03%0%,2,3191 3 03,2,3 01,2,3794,3
= 2 242 2
z 0%,2,3 0,%0%,2.3 03,2,3 (5)
2 2 2 2 2 2
| 91.2,579%1,3 01,2,3 03+07 2,3%70% 3
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In the psychoacoustics literature, this detection task is
framed as the problem of detecting a brandband stimulus that has
components in m channels, where the channels are defined in terms
of spectral, spatial, or temporal dimensions. The multi-channel
auditory signal detection problem has been discussed by Berg
(1989, 1990), Berg and Green (1990), Durlach et al. (1986), and
Green (1988, 1992). Note that the task also can be framed as a
group detection problem, in which a group or team of detectors
make the m observations and must arrive at a decision about the
existence of signal. That is the focus of the proposed project.

An optimal detector employs a decision variable, Z, that is
a monotonic function of the likelihood ratio statistic. As long
as the covariance matrix has the same form for the signal and
no-signal distributions, an optimal decision variable is a
linearly weighted sum of the detector estimates (Ashby and
Maddox, 1992), i.e.

Z =X u+k (6)
where X' is a row vector, T 'is the inverse of the covariance

matrix, g is a column vector, and k is a constant. Let the
vector, a = £ ', then an equivalent decision variable is -

m
Z =232 a; X (7)

i P
i=1

where the a. are optimal weights applied to the estimates, X .
The optimal weights are expressed in terms of the inverse of the
covariance matrix and the mean vector. The index of
detectability, 4 for this system is (Mahalanobis, 1931):

1
1deal Group’
1

= -1 %
d'ldeal Group [ pr 2 p ] (8)
where u' is a row vector.

Suppose that two sources of noise enter each detector, one
having a variance of ol . which is common to all the detectors,
and the other having a variance of ¢?, which is unique to each
detector. All of the off-diagonal elements of the covariance
matrix are equal to oln.- The optimal weights, a,, for this case
are (Durlach et al., 1986):

1 D n D[Jj
a= M ( —=-—) -5 — (9)
2 <t 2,42
0? op i olo?
m 1

= -1
where D = 0l n(1+0l ) (10)

i=1 o2
i

The detectability index, 4', (Durlach et al., 1986) is:
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m ui 5 m ui 5.1
d'ldeal Group = [ Z"( ) - D(Z ) ]z (11)
i=1 0} i=1 o;

The equation can be simplified further by assuming that the
unique variance components are equal in magnitude across the
detector array, that is

o= o} 4 for all i (12)

By definition, the correlation between any pair of detectors is
given by:

r = o2 /(0oi +02 ) (13)

Because the magnitude of the unique and common variances are
uniform over the array of detectors, the detectabilities of the
individual detectors, d!, are characterized only by the values of

We can normalize each detector's total variance by setting

”Y
lnd+o2 = 1, then

2

dl= u/ (04t 4, (14)

com)
Then we have the important relationship:
m Var(d') m (d')2

' =
d ldeal Group { + }
l1-1r l1 ~-1r+mnmr

i

(15)

where d' is the mean of the individual d's, Var(d') is the
variance of the individual d's, m is the group size, and r is
the inter-detector correlation.

b. Contingent criterion group (Sorkin and Crandall, submitted).

Groups vary in the degree of interaction among group members
that occurs during deliberation. At one extreme is the
hypothetical Ideal Group, in which it is assumed that members
freely discuss all matters relevant to communicating the values
of X, and p,, and then put this information into a form
approprlate for calculation of the optimum response. The other
extreme is the group with no interaction among members; the
members of this group simply make their private observations and
then take a single vote. 1In between these two extremes are real
groups such as committees, juries, and teams, where customs or
formal rules dictate how group members communicate and how member
judgments are combined to form the group decision.

One type of formally limited group interaction consists of
an iterative series of ballots and discussions, such as occurs in
an American jury. The group has a discussion, takes an open
ballot consisting of the binary responses of each member, and
counts the resulting votes. This sequence is repeated until a
specified majority vote is reached, or until a time limit is
exceeded.
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In terms of detection theory, the group operates as follows:
As a consequence of observing the stimulus evidence and prior to
interaction as a group, each member makes an estimate, X,, of the
likelihood of signal. This estimate leads to a vote, R;, of
either signal, S, or no-signal, NS. The vote is based on the
value of the member's observation, X;, and the member's pre-
deliberation criterion, c,. The votes are tallied and, if
unanimity is not reached, the group proceeds to discussion.
During the discussion, each member acquires information about
every other member's response, as well as about every each
other's detectability, d!, and criterion, c;. Each member then
uses that information to compute a new criterion. Thus, each
member shifts his or her own criterion as a function of the
response (R,), the estimated detectability (d4!), and the bias
(c;), of the other team members. After a new criterion is
computed, the member's original observation, X;, is again
compared with it, and a new response is made. This process is
repeated until a decision or time deadline is reached.

The rule for shifting a member's criterion follows from an
analysis of aided detection described by Robinson and Sorkin
(1985), Sorkin and Woods (1985), and Murrell (1977). An example
of this system is the case of two detectors, one is a humarmr
detector and the other is an auxiliary Yalarm" detector. These
detectors operate together to perform a detection task. The
human detector incorporates the binary response of the alarm
detector to decide whether a signal or no-signal event has
occurred.

According to Robinson and Sorkin (1985), the human detector
incorporates the alarm detector's output by employing two
different response criteria, depending on whether the alarm
detector has responded signal (S) or no-signal (NS). These
contingent criteria are computed using the following formula:

v p(ns) p(R|ns)
p(s) P(R|s)

where p(s) and p(ns) are the prior probabilities of signal and
no~signal, respectively, and p(R|s) and p(R|ns) are the
probabilities that the alarm detector has made response R, given
signal or given no-signal, respectively. V is the ratio of
payoffs to the human detector for the four possible event
outcomes:

B (given output R from alarm detector) = (1e6)

V = [V(NS*ns)-v(S*ns)])/[Vv(S+*s)-V(NS+s)] (17)

where v(S+*s) is the payoff for correctly~decide-signal, v(S-ns)
is for incorrectly-decide-signal, v(NS:ns) is correctly-decide-
no-signal, and v(NS-s) is incorrectly-decide-no-signal.

Eg. 16 is based on the principle that the human detector

should compute the posterior probability of S (and NS) given the
alarm detector's response, and assumes that the human wishes to
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maximize expected value. That is, after receiving information
about the alarm response, the human detector updates her prior
probability by substituting the posterior probability based on
the alarm detector's response. This updated prior probability is
employed in recalculating the human detector's criterion. Note
that in order to calculate p(R|s) and p(R|ns), it is necessary
for the human detector to know the d' and criterion of the alarm
detector.

If there are m independent alarm detectors,

p(ns) p(R,|ns) Pp(R,|ns)
B =V - . .

p(s) P(R,]|s) P(R,|s) P(R,[s)

P(R |ns)

(18)

where R, is the response of alarm detector i.

The team situation is much more complex than the alarm
detector paradigm because, (1) each detector's output goes to all
the other detectors, (2) the system decision is based on the
outputs of all of the detectors rather thar just the one (the
human's), and (3) the system decision is dynamic~-the set of
detector responses changes over time as each detector modifies
its decision to accommodate the influence of the othe's.

We have implemented the contingent criterion group algorithm
in simulations of team decision making. The most obvious group
behavior produced by this algorithm is the tendency for the
number of votes favoring the majority position to increase during
deliberation. This occurs because a preponderance of say, S
votes, shifts the average member's criterion toward making an S
response. Responses from members having higher d's produce more
criterion shift than responses from less sensitive members, and a
member's S vote that was made using a lax criterion for S counts
less than one that was made using a very strict criterion.

We can summarize some qualitative aspects of the model
simulations that we have run so far. First, on most trials the
algorithm results in a decision toward the position initially
favored by a majority of members. Second, sometimes members’
criteria oscillate over successive ballots. Third, occasionally
there is a reversal of the initial majority vote. Fourth, on
occasional trials a decision is not reached by the time our
arbitrary stopping point is reached. These qualitative aspects
of the model's behavior during group deliberation are consistent
with those found in previous empirical studies and simulations,
for example, by Kalven and Zeisel's (1966) study of the American
jury, and of small group studies described by Saks (1977) and
Penrod and Hastie (1980).

In order to perform the criterion-shift calculations
required by the contingent criterion model, each team member must
know the vote, detectability, and criterion of each of the other
members. In some groups, limitations on member communication
prevent members from acquiring this information. One group of
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this type is the Delphi Technique Group (Hastie, 1986; Gustafson
et al., 1973), in which efforts are made to maintain the
anonynmity of members in order to prevent undue influence or the
suppression of discussion by group members holding positions of
authority. After balloting, each member is provided only with an
aggregate vote that shows the number voting S and NS; no

information is provided about individual 4. and c.. It is easy
to add such informational constraints to a limited interaction
version of the contingent criterion model. Because specific

information about the other members is not available, each member
must use an averade estimate for the sensitivity and criterion of
the members giving the number of S and NS votes. Thus,
calculations of p(S|s) and p(S|ns) are based on the group
member's estimate of the average d' and criterion for the rest of
the group. As in the Contingent Criterion case, a preponderance
of S votes tends to shift members' criteria toward making an S
response more likely.

Figure 6 illustrates the results of some simulations of
different types of groups using different decision rules. The
figure is a plot of group d' versus the size of the group. From
best to worst performance, the different groups are: Ideal Group,
Contingent Criterion Group-unanimous decision, Contingent
Criterion Group-3/4 majority, Contingent Criterion Group-2/3
majority, Delphi group-2/3 majority, and Single Ballot-2/3
majority. All groups were assumed to have an inter-member
correlation of 0, and the same distributions of member d' and 8.
Substantially the same results occur when the intermember
correlation is greater than zero, but the differences are
smaller.

We were concerned about use of the d' measure for
characterizing the performance of these complex group detection
systems. If the variance of the hypothesis distributions were
not approximately equal, d' would not be an adequate measure,
particularly for B8<<1 or B>>1. Metz and Shen (1992) analyzed
group detection without the requirement for the equal variance
assumption. They predicted the accuracy gain in reading
diagnostic images, such as X-films, that result from replicated
readings by the same or different readers (all judgments were
rated equally). Rather than computing a group d', they showed
how the parameters of the general binormal Receiver Operating
Characteristic depend on the number of readings and the within-
reader and between-reader variation.

To check on the equal variance assumption for our models, w-
plotted the group hit and false alarm probabilities that were
obtained in several conditions of simulations using different
values of mean B, on Receiver Operating Characteristic (ROC)
curves [P(S|s) versus P(S|ns)]. The resultant curves were gquite
similar to equal-variance, single-detector ROC curves. Thus, at
least under the conditions evaluated by our simulations and
proposed for the human experiments, the use of the d' and g
measures appears to be appropriate for summarizing the
performance of group systems.
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3. Visual Display Processing.

In these experiments, we study an observers' ability to use
multiple independent sources of visual information. The
objective is to determine the observer's efficiency at using
information from different spatial locations of the display.
Observer sensitivity to different informational sources may be
inferred from the decision weight that the observer assigns to a
particular location in the visual field. A technique developed
by Berg (1989; 1990) was used to estimate these weights.

a. Observer sensitivity to element reliability (Montgomery and
Sorkin, submitted).

In our previous experiments (Sorkin et al., 1991), all
display elements were equally informative, hence each eleirent
should have been weighed equally in the observers' decisions.
When the observation durations were long, the weights were equal
across the spatial array of display elements. However, when the
observation durations were brief and the display coding was
complex, the highest decision weights were associated with dis-
play elements in the center of the visual field, around the
observer's fixation point. The weighting function was most
highly peaked when performance was poorest. We concluded from
these results, that under difficult conditions, the observer's
allocation of attention was restricted to the central portion of
the display.

This interaction between the difficulty of the task and the
availability of information from different regions of the display
is not surprising. A number of variables are known to affect an
observer's ability to obtaipn information from the elements of a
complex visual display. These include the number and spacing of
items found in the visual field, the type of display code (Boles
& Wickens, 1987; Legge, Gu & Luebker, 1989; Sanderson, Flach,
Buttigieg, & Casey, 1989; Sorkin et. al., 1991), and the display
item intensity (Eriksen & Rohrbaugh, 1970) and the time to
completely sample the visual field (Burgess and Barlow, 1983).

When the stimulus durations in the Sorkin et al. (1991)
experiment were long (more than 400 ms.), all display element
weights were equal, indicating that the observers could process
information from all regions of the display. Since the reliabil-
ity of all the elements was also equal, an equal weight strategy
was optimal for that task. An important question is whether,
under similar duration and coding conditions, an observer can
employ optimum weights when the reliabilities of the elements are
not equal across the visual array. Obviously, the ability to
match decision weights to the element reliability is necessary if
the observer is to prioritize the display elements according to
their importance to the task. In the present study we tested
whether observers could use differences in the reliability of the
display elements to make their detection decisions. We also
wanted to determine whether using this information imposed a
significant amount of additional processing "overhead" on the
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observer.

On each trial of the experiment, observers were presented
with a display consisting of nine display elements. The display
elements were nine vertical line-graph gauges arranged in a
horizontal array. The values displayed on the line-graph gauges,
<Xy, X%,,...¥%>, were determined by independent, normally
dlstrf%uted random variables. On a signal trial, the values of
the nine elements were selected from a distribution with a mean
of TR and a standard deviation of 0. On a noise trial, the
values were drawn from a distribution with a mean of unand a
standard deviation of o, where By < K. The observer's task was
to decide whether the data dlsplayed had been generated from the
signal or noise distribution.

The reliability of different display elements was controlled
by manipulating the variance of the distributions frow which the
element values were sampled. There were two levels of element
reliability; high reliability elements were sampled from
distributions with lower variance than elements with low
reliability. The variance of the nine display elcments was the
same for signal and noise trials, but differed across elenments
depending on the experimental condition. .

The experiment included four different presentation
conditions: stimulus duration (150, 400 and 800 ms), arrangement
of source reliabilities (grouped or distributed over the spatial
array), the manner in which trials of a particular condition were
presented within a block (mixed or fixed), and whether or not the
high reliability items were cued by a higher intensity (luminance
cue). Figure 7 illustrates the results. The figure shows the
observer weights for three subjects (and subject average)
averaged over all high and low reliability elements,
respectively, in the different conditions. The largest
difference between the weights for the high and low reliability
elements was for the luminance cue condition (URVL). These
differences approached the ideal weight values. The next largest
differences were for the condition when the spatial position of
the different reliability elements were fixed within a block, and
the smallest difference was when the spatial position varied and
there was no luminance cue. There were no significant differences
in weighting efficiency for different spatial arrangements. We
intend to follow up on these results, with the hopes of
optimizing the factors that enable the observer to use cues abouc
element reliability.
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6. Optimized Codes for visual display processing (Montgomery and
Sorkin).

These experiments continue the study of observers' ability
to use multiple independent visual information sources in forming
a decision. The goal of this study is to identify means of
coding the (independent) visual elements so as to maximize the
efficiency of decision making. The information provided by a
given source is a gquantity that changes in magnitude devending on
the underlying state, signal or noise. As with the previous
study this quantity will be represented as a value on a graphical
element in a visual display. We wish to examine the effects of
two specific factors on an observer's ability to use the
information conveyed by the separate elements. The first factor
is whether or not the arrangement of elements produces an
emercgent, object-like feature. The second factor is the
relationship between the emergent feature and the optimal
decision statistic for the task.

Emergent features are perceptual properties that arise from
the configuration of "simple" elements that are not identifiable
in any given element (Treisman, 1986). For instance, if the
elements are represented by three line segments, by arranging the
elements in a particular fashion, we could create cther features
such as areas, angles and intersections, that are not cobservable
in the individual lines. If we arranged the three line segments
so as to create a figure with an enclosed contour, the emergent
feature would have a distinct object-like quality.

There is evidence that a strong object-like feature can
facilitate processing of the underlying elements. Some
investigators have suggested that when elements are arranged to
form a strong object-like feature, the emergent property is
processed faster than the underlying elements (Pomerantz, 1981;
Wickens and Andre, 1990) and may adversely affect the amount of
resources allocated to processing the underlying elements.
Wickens and Andre (1990) argue that such displays should be used
only in tasks requiring information integration, rather than
tasks requiring attention to be focussed on individual elements
of the display. On the other hand, performance should be greatly
abetted in a task where an emergent feature is directly related
to the optimal decision statistic in the task. Unfortunately,
there has been very little quantification of the relative role of
these factors in different tasks.

In this ongoing study, observers are given one of two tasks
to perform. In both tasks, the observers are given four
independent pieces of information sampled from one of two
distributions, signal or noise. One task (the integrated task)
is a Yes-No detection task, similar to the equal reliability
condition used in study a. In this case, each element is sampled
from one of the two distributions, depending on the type of
trial, and the observer has to use all four sources to decide
whether the evidence is more representative of a signal or noise.
The other task (the independent task) is a four-alternative
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forced-choice (4AFC) task. Here, three elements are sampled from
the noise distribution and one is sampled from the signal
distribution. The observer has to decide which of the four
sources represented the signal.

According to TSD, the optimal decision statistic is a
likelihood ratio or some value that is monotonically related to
the likelihood ratio. For the Yes-No task, the optimal decision
statistic is the weighted sum of the evidence conveyed by the
separate sources. For a 4AFC task, the decision statistic is the
difference between a given weighted element and the weighted sum
of the remaining sources. The source which has the greatest
positive difference is the one selected as being the signal
element. Table 1 depicts the conditions that will be run in the
experiment. The columns represent the display code conditions.
Each condition represents a display code that demconstrates scne
combination of the emergent feature properties described abpove.
The four conditions consist of element arrangements which
possess: (a) no emergent feature, (b) an non-object-like emergent
feature that is mapped to the Yes/No decision statistic, ZaX, (c¢)
an object-like emergent feature that is not related to the Yes/No
decision statistic, and (d) an object-like emergent feature that
has a property related to the Yes/No decision statistic, ZaX.
Both the Yes-No and the 4AFC tasks are performed under each of
these conditions, and are represented by the rows of the matrix
in figure 1.

Table 1. Each observer will perform two tasks under four
different display code conditions.

No Emergent|Related to ZaX|Not Related |[Related to ZaX
Feature Non-Object Object Object

Yes/No

Task

4AFC

Task

If an object-like emergent feature facilitates the
processing of the underlying elements, then we may find more
efficient decision making performance for both Yes/No and 4AFC
decision tasks when this feature is present. Alternatively, if
processing of this object property interferes with processing of
the underlying elements, then decision tasks which require
sensitivity to the underlying elements may be hindered by display
codes that possess this object prcperty. Similarly, we should
observe the effect of a relationship between the magnitude of a
property of an emergent feature and the optimal decisicn
statistic.
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